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The evaluation of the eighth moment for benzenoid graphs 
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Summary. The evaluation of the eighth moment of the adjacency matrix of 
benzenoid graphs is considered. It is found that the eighth moment can be 
expressed in terms of 7 graphical invariants. By this we extend the recently 
obtained results of Hall [1] and Dias [2]. 
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1. Introduction 

Conjugated hydrocarbons are a class of compounds where topological effects 
play a significant role in determination of their physico-chemical properties. So, 
they are of a great interest for theoretical chemistry. Very often a conjugated 
hydrocarbon is represented by a molecular graph [3]. The adjacency matrix of 
the molecular graph (A) contains relevant information about molecular topoi- 
ogy. It consists of zero diagonal elements and unit off-diagonal elements corre- 
sponding to the nearest neighbours. The eigenvalues of the adjacency matrix: 
xl, x2 . . . .  , xn form the spectrum of the respective molecular graph [4]. 

The kth spectral moment of a molecular graph (Mk) is defined as: 

Mk = ~ x/k (1) 
i=I 

where summation runs over all eigenvalues. 
It is well known that: 

Mk = Tr[A k]. 

The element [Ak]ij represents the number of walks of length k between the 
vertices i andj. Walks of different lengths are an object of interest of many graph 
theoreticians. A concept of an atomic code, based on enumeration of self-return- 
ing walks of different lengths, was put forward by Randi6 [5]. Non-equivalent 
vertices that have the same atomic codes, so-called isocodal vertices, have been 
discovered [5, 6]. The ID number (molecular identification number), proposed 
also by Randi6 for identifying molecular graphs by a real number, is based on 
similar concepts [7, 8]. 
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The spectral moments have been used in a topological theory of conjugated 
hydrocarbons already in the early seventies [9-11]. In the recent past they have 
been intensively examined and various applications in chemistry have been 
found. Being very closely connected with the coefficients of the characteristic 
polynomial, they were used for facile calculation of the characteristic polynomial 
of acyclic [12] and different small molecules with or without heteroatoms 
[13, 14]. In a series of papers [1, 9, 10, 12-19] spectral moments were used for the 
estimation of HMO total ~r-electron energy and the examination of its depen- 
dence on molecular structure. A treatment based on the energy partitioning via 
moments was proposed [19, 20] for dealing with aromaticity of conjugated 
systems. The moments also found remarkable applications in the solid-state 
physical chemistry [21-24]. Namely, it has been shown that, using a continued 
fraction technique, the normalized moments can be used for obtaining the HMO 
density of states and other useful properties for solids. 

In all applications of moments it is important to know how the moments 
depend on molecular structure. For these reasons efforts have been made to 
establish explicit topological formulae for moments. In these works particular 
attention has been devoted to benzenoid hydrocarbons, but it is worth mention- 
ing that a procedure for evaluation of moments for acyclic chains was also put 
forward [18]. This method was further elaborated and adapted to benzenoid 
systems [ 19]. 

Topological formulae for  spectral moments  

We first mention some topological invariants which will be needed in the text 
that follows. Note that all symbols refer to benzenoid graphs. 

h - number of six-membered rings 

n - number of vertices 

m - number of edges 

B - number of bays 

C - number of coves 

F -  number of fjords 

n b - number of bay regions (n6 = B + 2C + 3F) 

hR - number of tings all of whose verticies are of degree 3 

h I - number ~ of  tings one of whose vertices is of degree 2 

ni - number of internal vertices. 

Some of these structural details are illustrated in Fig. 1. 
According to Eq. (1) the zeroth spectral moment of all graphs is in a trivial 

manner given by: 

mo~n, 
Because of the pairing theorem all odd moments of bipartite graphs (and 
therefore, of all benzenoid systems) are equal to zero: 

M2k+l=0,  k = 0 , 1 , 2  . . . . .  
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Fig. 1. Symbols used in this paper [25]. There are 5 types of 
rings all of whose vertices are of degree 3: L4, Ls, Z6, A3, 
and A4; their total number is denoted by h R. There are 2 
types of rings one of whose vertices is of degree 2:P3 and P4; 
their total number is denoted by hz 

The second spectral moment  of  all graphs is given by a long and well known 
formula: 

M 2 = 2m 

whereas the expressions below hold only for benzenoid systems: 

M4 = 18m - 12n 

M6 = 148m - 144n + 48 + 6n b. 

The result for the fourth moment  seems to be first reported in Ref. [11], and was 
eventually rediscovered several times [1, 15, 16, 26]. Dias [2] and Hall [1] indepen- 
dently arrived at the result for M6. Dias [2] gave also a formula for the eighth 
coefficient of  the characteristic polynomial of  catacondensed benzenoid systems. 
From it a topological expression for the eighth spectral moment  of  catacondensed 
benzenoids can easily be deduced. Jiang and Zhang [19] gave the formulae for 
benzenoid systems up to M12. Although their method is very useful for acyclic 
chains [18], it becomes practically useless for calculation of moments  of  cyclic 
graphs. Moreover,  formulae of Jiang and Zhang are of  the form that cannot be 
compared with the formulae listed below in the present paper. Nevertheless, 
formulae f rom Ref. [19] show that the spectral moments  can be expressed in terms 
of graph fragments. 

In this paper  we derive a topological formula for the eighth moment  of  all 
(catacondensed and pericondensed) benzenoid systems. 

2. Evaluation of  M s 

Since a benzenoid system is bipartite, its vertices can be separated into two groups 
(white and black), such that a white vertex has only black neighbours and vice 
versa. Then the adjacency matrix can be put into the form [27]: 

where B contains all the non-zero interactions, and B r is the transpose of B. 
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In the case of  M8 we have: 

M8 = Tr[A 8] = Tr[C 2] + Tr[Ca], (2) 

where C and C' denote the symmetric matrices [B. B r]2 and [B r .  B]2, respec- 
tively. Since the trace of the square of a symmetric matrix is the sum of the 
squares of all elements of the matrix, Eq. (2) can be put into the form: 

It can be proved that: 

M8 = E + E 
i j  i , j  

which implies: 

Z = Z c,j, 
i , j  i , j  

Ms= 2 Z C~.= 2 ~ CI~. (3) 
i , j  i , j  

Both matrices refer to only one group of vertices - either black or white. In the 
text that follows it will be considered that C reflects the interactions of  black 
vertices, and C' that of  white ones. In Fig. 2 we present as an example the 
matrices C and C' of  perinaphthyl. 

As a consequence of  Eq. (3), the eighth moment  can be deduced f rom the 
matrix C as well as from the matrix C' by squaring each element and adding. For 
such a calculation it is necessary to know which numbers appear in the matrices 
C and C' and how many times. If aw and bw show how many times a certain 
value w appears among the matrix elements of C and C', respectively, then Ms 
can be expressed as follows: 

M 8 = 2  ~ awW2=2 ~ bw w2. (4) 
w = l  w = l  

By elementary transformations of Eq. (4) the result: 

M8= ~ (aw+bw)W2= ~ Cw w2 (5) 
w = l  w = l  

C = 

C' = 

ii 6 6 2 1 i ]  8 13 8 s 
8 8 13 6 
2 6 6 6 
6 2 6 1 

'7 7 5 5 .2 1 
7 15 7 7 7 7 
5 7 7 2 1 2 
5 7 2 7 5 2 
2 7 1 5 7 5 
1 7 2 2 5 7 
2 7 5 1 2 5 

2" 

7 
5 
1 
2 
5 
7 

Fig. 2. Matrices C and C' 
of perinaphthyl; C refers 
to black vertices, C' to 
white vertices 
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is obtained. In Eq. (5) cw represents the total number of elements of  C and C' 
taking the value w. 

An element C;j (as well as C~j) is equal to the number of  walks of length 4 
between the vertices i and j of the respective rnglecular graph. It means that aw 

and bw represent the numbers of  structural fragments which enable w distinct 
walks of length 4. The quantities aw and bw count the fragments in which such 
walks start and end at black, respectively white vertices, and Cw is equal to the 
total number of the graph fragments which enable w walks of  length 4. Hence 
our problem is reduced to the recognition and enumeration of  structural 
fragments enabling walks of  length 4. 

3. Recognition and enumeration of structural fragments enabling walks 
of length 4 

We consider all possible fragments of benzenoid systems which enable walks of  
length 4: They are classified according to their w value. They are depicted in Fig. 
3. A systematic examination shows that w can assume only the values 1, 2, 5, 6, 
7, 8, 13, 14, and 15. 

We now have to determine the coefficients c w. Since this requires a very 
detailed combinatorial consideration, we present here only the details for c13. 

Let t be the fragment that enables 13 walks of  length 4. As shown in Fig. 3 
it has a vertex of  degree 3 (heavy dot) surrounded by two vertices of  degree 2 
and one vertex of degree 3. The vertex o f t  at which the walks start and end 
(heavy dot) will be called a vertex of  type t. In linear polyacenes there are two 
fragments t between each pair of  adjacent six-membered rings, therefore there 
are (h - 1). 2 fragments t. Benzene has no fragments t, so that it, formally, 
satisfies the expression (h - 1). 2. 

Consider a graph R that consists of  a certain (but arbitrary) number of  
(fused) hexagons lying along parallel lines. Each subgraph is a linear polyacene 
or benzene (Fig. 5). I f  the number of  components of R is k, then the total 
number of  its six-membered rings is: 

h : h  1 +h2-k-" " • q'-h k 

where hi is the number of  rings in the ith component. In such a system there are 

2(h, - 1) + 2(h2 - 1) + . . .  + 2(he - 1) = 2(h - k) 

fragments t. 
Imagine a condensation of  the system R, forming the system S (Fig. 6). In 

the system S, five types of  vertices can be observed: 

- vertices which are of  type t in the graph R and remain of  the same type in the 
graph S ( 0 ) ;  

- vertices which are of  type t in the graph R, but not in the system S. They can 
be internal ( O)  or external ( , ) ;  

- vertices that become of  type t by the condensation ( [ ] ) ;  

- vertices similar to those marked by [], but lying in bays, coves and fjords ( I I ) ,  
that do not become of  type t because of  their position. 

Obviously, there are n i vertices marked by O. If  n , ,  n[] and n .  represent 
numbers of  vertices marked by *, [] and II, respectively, then the expression 
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Fig. 3. Structural fragments in 
benzenoid systems enabling walks 
of length 4; the end vertices of 
the respective walks are marked 
by heavy dots; the edges which 
the fragment must possess are 
represented by full lines, the 
dashed edges may but need not 
exist 

Fig. 4. Vertices of type t are 
indicated by heavy dots 

2h - 2 k  - n~ - n ,  + nc~ r e p r e s e n t s  t h e  n u m b e r  o f  f r a g m e n t s  t i n  t h e  s y s t e m  S. 
S ince  n D +  n u  = 2 (k  - 1) we  f u r t h e r  h a v e :  

c13 = 2h  - 2 - ni ~ ( n m +  n , ) .  

V e r t i c e s  m a r k e d  b y  • a n d  * lie o n  bays ,  coves  a n d  f jo rds ,  so t h a t  a b a y  h a s  2, 
a c o v e  3 a n d  a f j o r d  4 o f  t h e m .  F i n a l l y ,  t h e  f o r m u l a :  

c~3 = 2(h  - 1) - ni - 2 B  - 3 C  - -  4 F  (6)  

is o b t a i n e d .  
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/ / 

/ 

/ 
Fig. 5. Example of a graph R 

Fig. 6. Examples of a system S 

F o l l o w i n g  s imi la r  c o n s i d e r a t i o n s  it c a n  be  s h o w n  that :  

cl = 8(h - 2) + 4 + 4B  + 10C + 16F  + 4hR + 2h l  

c2 = 8(h - 1) + 2n i 

c5 = 4(h + 1) - 4B  --  6 C  - 8 F  + 4h R + 2h: - 4hi 

c6 = 6(2 - hR) + 8B + 12C + 16F  + 3ni - 3hi 

Cv = 12(h - 1) - 6B - 10C  - 14F  - 6ni 

c8 = 2(h - 2) + 2B + 4 C  + 6 F  + 2hR + 4ni + hi 

c14 = 2(B + C + F )  

c15 = C + 2 F  + ni. 

By subs t i t u t i ng  Eqs .  ( 6 ) - ( 1 4 )  b a c k  in to  Eq .  (5) we  a r r ive  at: 

M 8 = 1194h - 694 + 80B + 168C + 2 5 6 F  + 16hR + 18h: + 34ni 

w h i c h  is eas i ly  t r a n s f o r m e d  in to :  

21//8 = 1330m - 1364n + 704 + 80B + 168C + 2 5 6 F +  16hR + 8h~. 

(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 

(15) 

(16) 
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Both Eqs. (15) and  (16) show that  M8 can be expressed in terms of 7 mutua l ly  
independent  topological factors. These formulae are valid for all benzenoid  
systems, except benzene. The special case for catacondensed benzenoids  agrees 
with the previous result of  Dias [2]. 

It  is worth  no t ing  that  the present result has already been exploited in [28] 
for ob ta in ing  McClel land-type approximat ions  for total  7~-electron energies of 
benzenoid hydrocarbons.  

Acknowledgement. I wish to thank Professor Ivan Gutman for giving me useful advice and comments 
on this paper. 

References 

1. Hall GG (1986) Theor Chim Acta 70:323 
2. Dias JR (1985) Theor Chim Acta 68:107 
3. Gutman I, Polansky OE (1986) Mathematical concepts in organic chemistry. Springer-Verlag, 

Berlin 
4. Cvetkovi6 D, Doob M, Sachs H (1980) Spectra of graphs -theory and application. Deutscher 

Verlag der Wissenschaften, Berlin 
5. Randi6 M (1980) J Comput Chem 1:386 
6. Knop JV, Miiller WR, Szymanski K, Randi6 M, Trinajsti6 N (1983) Croat Chem Acta 56:406 
7. Randi6 M (1984) J Chem Inf Comput 24:164 
8. Szymanski K, Mfiller WR, Knop JV, Trinajsti6 N (1986) Croat Chem Acta 59:719 
9. Gutman I, Trinajsti6 N (1972) Chem Phys Lett 17:535 

10. Gutman I, Trinajsti6 N (1973) Chem Phys Lett 20:257 
11. Gutman I (1974) Croat Chem Acta 46:209 
12. Kiang YS, Tang AC (1986) Int J Quantum Chem 29:229 
13. Dias JR (1987) J Mol Str (Theochem) 149:213 
14. Dias JR (1987) Can J Chem 65:734 
15. Turker L (1984) Match 16:83 
16. Cioslowski J (1985) Z Naturforsch 40a:1167 
17. Cioslowski J (1986) Match 20:95 
18. Jiang Y, Tang A, Hoffmann R (1984) Theor Chim Acta 66:183 
19. Jiang Y, Zhang H (1989) Theor Chim Acta 75:279 
20. Jiang Y, Zhang H (1990) Pure Appl Chem 62:451 
21. Burdett JK, Lee S, Sha WC (1984) Croat Chem Acta 57:1193 
22. Burdett JK, Lee S (1985) J Amer Chem Soc 107:3050 
23. Burdett JK, Lee S (1985) J Amer Chem Soc 107:3063 
24. Burdett JK, Lee S, McLarnan TJ (1985) J Amer Chem Soc 107:3083 
25. Gutman I, Cyvin SJ (1989) Introduction to the theory of benzenoid hydrocarbons. Springer, 

Berlin Heidelberg New York 
26. Dias JR (1985) Nouv J Chim 9:125 
27. Hall GG (1955) Proc Roy Soc A 229:251 
28. Gutman I (1991) Z Phys Chem (in press) 


